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Abstract: An enantiocontrolled total synthesis of the tricyclic alkaloid, stemoamide (2), is reported.

Roots and thizomes of Stemona (Stemonaceae) have long been used as anthelmintics and as antitussives in
traditional folk medicine of China and Japan. The extracts from this plant specics have been found to contain, as
their principal active constituents, a variety of alkaloids such as, stemonine 1, stemoamide 2, and stemospironine
3a.12 Several of these polycyclic alkaloids have been isolated and found to possess powerful insecticidal activity
and/or neurotoxic properties.3 Synthetic efforts targeting these molecules have appeared in the literature. We
have previously reported the total synthesis of (+)-croomine 3b, utilizing a Staudinger reaction followed by an
iodine mediated bis-cyclization to create rings B, C, and D in two steps.4 A total synthesis of (;.i:)-stenine 4, was
completed by Chen and Hart, demonstrating ring closures by an intramolecular Dicls-Alder cycloaddition-
aminimide rearrangement sequence.3 Herein we report the first total synthesis of stemoamide 2.

Stemonine 2 Stemoamide 3a Stemospironiné R=0CHs 4 Stenine
35 Croomine R=H

Asymmetric synthesis of an acyclic carbon:chain-precursor is outlined in Scheme I for construction of the
key intermediate, azido aldehyde 12. Aldehyde § was prepared in 91% overall yield from (R)-(~)-methyl 3-
hydroxy-2-methylpropionate in 5 steps.® Permanganaté oxidation of aldehyde 5 gave the corresponding
carboxylic acid which was then transformed to the imide 6 via the mixed pivalic anhydride.”? The asymmetric
Evans aldol reaction? of 6 with 4-benzyloxybiitanal, required freshly distilled di-n-butylboron triflate and
proceeded to give the expected syn-aldol derivative 7 as the exclusive prodﬁct in 88% yield. When commercial
dichloromethane solutions of di-n-butylboron triflate were used or when di-n-butylboron triflate was not freshly
distilled, the reagent would cleave the terminal silyl ether of 6 which could then intramolecularly cyclize to give a
butyrolactone.8 Deprotection of the silyl ether of 7 with aqueous HF was followed by carcful addition of
potassium carbonate to basify the reaction mixture in order to release the chiral auxiliary and yield the disubstituted
butyrolactone which was then converted to its r-butyldimethylsilyl ether 8 in standard fashion.9 Neither
epimerization at C-9 nor climination to give the o,B-unsaturated carbonyl compound was detected in this
sequence.
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OReagents and conditions: 8) 1M KMnOj, 0.5M NaH2POy4, -BuOH, 15 min; b) -BuC(O)CI (1 eq), EN (1.3 eq), THF,
0 °C—s11, 30 min; then cool to —78 °C and add premixed solution of (S)4-(benzyl)-2-oxazolidinone (1.1 eq) and n-BuLi (1.1 eq), THF,
—78 °C; then warm to 1, 2h, 94% from 5; c) n-BuzBOTY (1.2 eq), CHzClz, —78 °C, 1h; then EtsN (1.6 eq}, —78 °C—0 °C, 1h; then
4-benzyloxybutanal (1.5 eq), ~78 °C—0 °C, 1h, 88%; d) 48% aq HF (17 eq), CH3CN, 20 min, tt; then sat aq NaHCO3 (0.9M, 0.7
eq), K2CO3 (18 eq), 2h, 82%; €) 1-BuMe,SiOTH (1.3 eq), collidine (1.5 eq), CH2Cly, ~78 °C—rt, 97%; f) 4-Iodo-1-butene (2.1 eq),
t-BuLi (2.1 eq), Et20, —100 °C, 45 min; then add 8 (1 eq), ~100 °C—>-78 °C, 1.5 h; then collidine (3.4 eq), 1-BuMezSiOTf (3.2 eq),
~78 °C—»nt, 2.5h, 78%; g) LIEGBH (1.4 eq), THF, —78 °C, 30 min; then warm to 1t, 1.5h, 91%; h) MsCI (1.6 eq), pyridine, rt, 12h,
96%:; i) NaN3 (20 eq), HMPA, 1t, 9h; j) O3, CH2Clp/CH30H (3:1), =78 °C; then MezS, 78 °C—srt, 3h, 49% from mesylate.

The condensation of the lactone 8 with 4-bromo-1-butene (via halogen-metal exchange to give the
corresponding organolithium er Grignard) proved to be problematic. Various side reactions arising from Wurtz
coupling and reduction of the primary halide, were observed. In addition, the yield from these reactions was
variable. However, the procedures of Bailey102 and Negishil0b modified and applied to 4-iodo-1-butene
produced the primary alkyllithium in diethylether at low temperatures and cleanly gave an intermediate alcohol
which was protected as its #-butyldimethylsilyl ether in the same reaction pot to afford 9 in excellent reproducible
yields. Reduction of ketone 9 by treatment with Super-Hydride® at —78 °C resulted in the formation of alcohol
10 as the exclusive product. The stereoselective formation of the 1,3-anti-diol derivative 10 is noteworthy. The
R-alcohol configuration (at C-9a) is generated'via a Felkin-Anh hydride addition, in which the PB-¢-
butyldimethylsilyl ether predetermines the assignment of the C-8 carbon appendage as the larger substituent.
Elucidation of stereochemistry at C-9a was made by 13C-NMR analysis of the corresponding 1,3-acetonide.11:12
This may offer a general strategy for production of 1,3-anzi-diols from sya-aldol adducts.

Displacement of the methanesulfonate of 10 with sodium azide proceeded uneventfully with inversion of
configuration to yield 11, which was unstable when stored at room temperature or when purified through silica
gel.13 In practice, the azido alkene 11 was directly subjected for ozonolysis of the terminal olefin to produce 12.
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The strategy for sequential operations of ring cyclizations to afford stemoamide was crucial. As shownin
Scheme Ii, sodium chlorite axidation of 12 followed by esterification of the resulting carboxylic acid 13 gave
methyl ester 14. Mild reduction of the azide functionality with triphenylphosphine and hydrolysis of the resulting
iminophosphorane led to the in situ cyclization to lactam 15. Hydrogenation of 15 and conversion of the primary
alcohol to the corresponding mesylate with subsequent treatment with sodium hydride afforded the 1-
azabicyclo[5.3.0]decanone 16 in 71% overall yield from 15.14

Scheme II?
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bReagents and conditions: k) NaClO2 (9 eq), NaH2PO4°H20 (8 ¢q), CH3CN, -BuOH, H20, 2-methyl-2-butene (300 eq),
0 °C, 30 min; 1) CHaN2 (xs). E20, 0 °C, 15 min, 96% from 12; m) PPh3 (6.5 eq), THF/H2O (100:1). 10-2M, reflux, 48h,
87%; n) Hz, 10% Pd-C, E1OH, 24h; o) MsCl (3 eq), pyridine, rt, 15 min; p) NaH (xs), THF 10-2M, rt, 1.5h, 71% from 185;
q) HF=NEt3 (xs), CH3CN, rt, 7h, 63% (78% based on recovered 15); r) Dess-Martin periodinane (1.6 eq), pyridine (20 eq), CH2Cly,
rt, 30 min; s) n-BugNF (xs), THF, rt, 15 min, 94% (2 steps); 1) PDC (3 eq), CH»Cly, reflux, 1.5h, 80%.

Selective deprotection of the primary silyl ether was realized with excess HF<Et3N in acetonitrile, and oxidation of

the resulting alcohol using the Dess-Martin pericdinane!3 gave an intermediate aldehyde. Deprotection of the
remaining silyl ether at C-8 using tetra-n-butylammonium fluoride directly gave a 1:1 mixture of lactols. Finally,
pyridinium dichromate oxidation of the lactols in refluxing dichloromethane gave stemoamide 2, which
crystallized as colorless needles from diethylether, mp 190-191 °C (dec).16 Single crystal x-ray analysis provided
unambiguous confirmation of the structure of 2.17 Proton and carbon NMR data was in agreement with the
reported spectral characterization of the natural product.2
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Data for 2: mp 190-191 °C (E20); o] 5141 ° (¢ = 0.19, CH30H) and (0] % ~181 ° (c = 0.89, CH30H);
Rf (10% THF/EtOAc) 0.15; IH NMR' (500 MHz, CDCl) 131 (d, J = 7 Hz, 3H), 1.45-1.55 (m, 2H),
1.72 quintet, J = 11 Hz, 1H), 1.85-1.9 (m, 1H), 2.03-2.08 (m, 1H), 2.38-2.45 (m, 4H), 2.60 (dq, J =
6.9, 12.4 Hz, 1H), 2.66 (broad dd, J = 14, 12 Hz, 1H), 4.0 (dt, J = 6.4, 10.7 Hz, 1H), 4.13-4.18 (m,
1H), 4.21 (dt, J = 3, 10.3 Hz, 1H); 13C NMR (125 MHz, CDCl3) 8 177.4, 174.0, 55.8, 52.7, 40.2, 37.3,
34.8, 30.6, 25.6, 22.6, 14.1; IR (CHCl3) v (cm~1) 3027, 3005, 2944, 1771, 1682; EIMS m/z (relative
intensity) 223 (M*, 42), 208 (113, 180 (7), 138 (6), 124 (14), 110 (26), 98 (100), 84 (17); HRMS my/z
-223.1216 (Caled for C1oH17NO3 -223.1209).
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